

RSET. Campus, S.V.Road, Malad (West), Mumbai – 400 064 Tel No. : 022 45207766

Web: www.sarafcollege.org

Name of The Programme: Bachelor of Science(Information Technology)

Programme Outcomes:

Attain a strong foundation in programming, software development, and IT principles.
Apply technical skills ethically and responsibly in the IT industry
Develop communication, research, analytical, and leadership abilities for career advancement.
Understand and integrate new IT advancements to address global challenges and opportunities.
Demonstrate leadership, teamwork, and a commitment to sustainable and ethical IT practices.

Programme Specific Outcomes:

PSO 1	Domonatura
1301	Demonstrate expertise in programming languages, software
. 1	engineering, and system design.
<u>PSO 2</u>	Apply knowledge of computer networks, databases, and cybersecurity to solve real-world IT problems.
PSO 3	Plan, develop, and manage IT projects using analytical and
	problem-solving skills.
PSO 4	Integrate AI, cloud computing, IoT, and other advanced technologies
746	into innovative IT solutions.
<u>PSO 5</u>	Exhibit ethical behavior, effective communication, and teamwork in
	diverse professional settings.
	1 - 1 - 20 - 1 - 1 - 20 - 1 - 20 - 1 - 20 - 20

Programme coordinator

MALAD (WEST) MUMBAI-400064 Dr. Lipi Mukherjee

Dr. Ashwat Desai

Vice Principal(SFD)

PRINCIPAL
REprincipat nelan Education Trust
Ghanshyamdas Saraf College
(Arts & Commerce)
Malad West, Mumbal - 400 084

gsgc@rajasthani.org.in

COURSE OUTCOME

Name of The Programme: Bachelor of Science(Information Technology)

FY BSCIT (SEM I)

Programming Principles with C

After completing the course, the learner will be able to:

CO1	Learn the history, structure, and compilation process of C		
COI			
	programs, including algorithms, data types, and preprocessor		
Š.,	directives.		
CO 2	Apply conditional statements, loops, and various operators to		
L a a a s	implement logic in programs effectively		
CO 3	Utilize user-defined and built-in functions, recursion, and scope		
arg A	rules to create well-structured C programs.		
CO 4	Use pointers for array manipulation, dynamic memory allocation,		
	and function arguments for efficient programming.		
CO 5	Work with structures, unions, file operations, and command-line		
	arguments for data storage and management.		

Digital Logic and Applications

Tittel com	picting the course, the learner will be able to:
CO1	Learn binary, octal, and hexadecimal number systems, conversions, and logic gates (AND, OR, NOT, NAND, NOR, XOR, XNOR).
CO 2	Use Boolean theorems and minimization techniques (K-map, Quine-McCluskey) to optimize digital circuits.
CO 3	Develop circuits like multiplexers, demultiplexers, encoders, and decoders based on Boolean logic.
CO 4	Understand latches, flip-flops, registers, and counters for designing memory and timing devices.
CO 5	Learn about Arithmetic Logic Units (ALUs), binary multiplication algorithms, and real-world digital system implementations.

RSET. Campus, S.V.Road, Malad (West), Mumbai – 400 064 Tel No. : 022 45207766

Web: www.sarafcollege.org

gsgc@rajasthani.org.in

Fundamentals of Database Management Systems

After completing the co	ourse, the learner will be able to:
After combleting the co	mrse, the learner will be able to.

After compi	ting the course, the learner will be able to:	
CO1	Learn relational model, constraints, and relational algebra for	
100 and 1	effective database design.	
CO 2	Use ER and Enhanced ER diagrams to structure and design	
All the second second	databases efficiently.	
CO ₃	Utilize functional dependencies and normalization methods to	
San Asia	optimize database structure.	
CO 4	Perform complex queries, use triggers, views, and indexing for data	
2 2 2	retrieval and manipulation.	
CO 5	Ensure database integrity with transactions, concurrency	
	techniques, and recovery mechanisms.	

Computational Logic and Discrete Structure

After completing the course, the learner will be able to:

Aitel comp.	iering the course, the learner will be able to:	
CO1	Understand Venn diagrams, set operations, relations, and their	
	applications in computer science.	
CO 2	Learn function types, algorithmic complexity, and probability	
	concepts in computational logic.	
CO 3	Implement permutations, combinations, recurrence relations, and	
r ya.	the Pigeonhole principle for problem-solving.	
CO 4	Explore graph algorithms, trees, and shortest path problems like	
	Dijkstra and Warshall's algorithm.	
CO 5	Learn tree traversal techniques, binary search trees, heaps, and	
	ordered sets for efficient data processing.	

Technical Communication Skills

CO1	Understand verbal, non-verbal, and technical communication to convey ideas clearly.
CO 2	Learn to write emails, business letters, memos, reports, and proposals with clarity and precision.
CO 3	Utilize presentation techniques, audience analysis, and visual aids for impactful delivery.
CO 4	Develop active listening skills, teamwork, and confidence in professional interactions.

RSET. Campus, S.V.Road,
Malad (West), Mumbai – 400 064
Tel No.: 022 45207766
Web: www.sarafcollege.org
gsgc@rajasthani.org.in

CO 5	Understand workplace ethics comparets communication to
8 B	Understand workplace ethics, corporate communication strategies,
	and the role of MIS in decision-making.

FYBSCIT (Sem II)

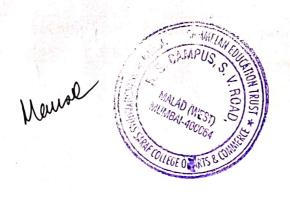
Object Oriented Programming with C++

After completing the course, the learner will be able to: CO₁ Learn object-oriented concepts like classes, objects, polymorphism, inheritance, and their role in software development. CO₂ Gain hands-on experience with C++ syntax, operators, expressions, and structured programming techniques. CO₃ Apply OOP principles such as encapsulation, constructors/destructors, operator overloading, and function overloading. **CO 4** Utilize inheritance, virtual functions, file handling, templates, and exception handling for robust software development. Leverage STL components, string manipulation, and modern C++ **CO** 5 enhancements for efficient programming.

Fundamentals of Micro Processor and Microcontrollers

CO1	Understand microprocessor and microcontroller architecture, their memory interfacing, and applications.		
CO 2	Develop assembly language programming skills, including writing, assembling, and debugging programs.		
CO 3	Interface peripherals with microprocessors and microcontrollers, including input/output devices and memory modules.		
CO 4	Explore embedded systems and 8051 microcontroller programming using embedded C.		
CO 5	Design and develop embedded applications, selecting microcontrollers, developing firmware, and understanding industry trends.		

gsgc@rajasthani.org.in


Web Applications Development

After o	completing	the course.	the learne	r will be	able to
TRICCI	ompicuitg.	the course.	the learne	r will be	able to.

CO1	Gain a strong foundation in Internet technologies, the World Wide Web, and web protocols.
CO 2	Design and develop responsive web pages using HTML5 and CSS for enhanced user experience.
CO 3	Implement dynamic functionality with JavaScript, DOM manipulation, and event handling.
CO 4	Master server-side scripting with PHP, including form handling, validation, and session management.
CO 5	Integrate PHP with MySQL to build dynamic, data-driven web applications.

Numerical Methods

CO1	Develop mathematical models and apply numerical techniques to solve engineering problems while analyzing errors.
CO 2	Utilize root-finding methods, interpolation techniques, and iterative methods for solving algebraic and transcendental equations.
CO 3	Implement numerical differentiation and integration techniques, including Trapezoidal and Simpson's rules.
CO 4	Apply numerical methods for solving differential equations, including Euler's and Runge-Kutta methods, along with regression analysis for data approximation.
CO 5	Formulate and solve linear programming problems and partial differential equations (PDEs) using numerical techniques.

RSET. Campus, S.V.Road, Malad (West), Mumbai – 400 064 Tel No. : 022 45207766

Web: www.sarafcollege.org

gsgc@rajasthani.org.in

Green IT

After completing the course, the learner will be able to:

CO1	ting the course, the learner will be able to:
	Understand the environmental impact of IT, including carbon footprint, power consumption, and e-waste, while exploring regulatory standards and initiatives.
CO 2	Implement power-saving strategies, cooling optimizations, and virtualization techniques to reduce energy consumption in IT infrastructure.
CO 3	Explore green computing solutions such as eco-friendly hardware, green cloud computing, and paperless workflows to enhance sustainability.
CO 4	Evaluate recycling and disposal methods for IT equipment, considering lifecycle management, hardware certification programs, and responsible e-waste handling.
CO 5	Develop and track sustainable IT strategies, integrating green business processes, supply chain improvements, and continuous environmental assessments.

SY BSCIT (SEM III)

Python Programming

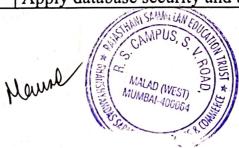
CO1	preting the course, the learner will be able to:
COI	Understand core Python programming concepts, including data
	types, control structures, and functions.
CO 2	Develop small-scale Python projects and contribute to open-source
	applications.
CO ₃	Utilize Python libraries and frameworks 4. 1. 111. or .
	Utilize Python libraries and frameworks to build efficient and scalable solutions.
CO 4	
	Implement file handling, exception handling, and other advanced Python features.
CO 5	Apply Python programming skills to solve real-world
a fi je	computational problems.
· · · · · · · · · · · · · · · · · · ·	

gsgc@rajasthani.org.in

Data Structures

After completing the course, the learner will be able to:

mes. completing the course, the learner will be able to:	
CO1	Understand fundamental data structures such as arrays, linked lists,
	stacks, and queues.
CO 2	Implement searching and sorting algorithms efficiently.
CO 3	Apply trees, graphs, and hash tables for problem-solving.
CO 4	Analyze time and space complexity for optimized programming solutions.
CO 5	Develop real-world applications using appropriate data structures.


Computer Networks

After completing the course, the learner will be able to:

CO1	Understand network architecture, protocols, and models.
CO 2	Analyze data transmission techniques and error control mechanisms.
CO 3	Configure IP addressing and subnetting for efficient network design.
CO 4	Evaluate network security principles and risk mitigation techniques.
CO 5	Implement basic networking configurations and troubleshooting methods.

Database Management Systems

CO1	Understand database concepts, architecture, and data models.
CO 2	Design and implement relational databases using Entity-Relationship (ER) models and normalization techniques.
CO 3	Construct SQL queries for data retrieval, manipulation, and transactions.
CO 4	Implement indexing and optimization techniques for performance enhancement.
CO 5	Apply database security and backup mechanisms for data integrity.

gsgc@rajasthani.org.in

Applied Mathematics

After completing the course, the learner will be able to:

	The tre course, the learner will be able to:
CO1	Apply mathematical techniques in computational problem-solving.
CO 2	Understand matrix algebra, differentiation, and integration concepts.
CO 3	Solve linear equations and probability-based problems in IT applications.
CO 4	Utilize mathematical models for data analysis and decision-making.
CO 5	Implement numerical methods for scientific computing.

SY BSCIT (SEM IV)

Core Java

CO1	Understand object-oriented programming concepts in Java.
CO 2	Develop Java applications using classes, objects, and exception handling.
CO 3	Implement multithreading, file handling, and database connectivity in Java.
CO 4	Utilize Java frameworks and APIs for enterprise application development.
CO 5	Create GUI-based applications using Java Swing and JavaFX.

RSET. Campus, S.V.Road, Malad (West), Mumbai – 400 064 Tel No.: 022 45207766

Web: www.sarafcollege.org

Introduction to Embedded Systems

After completing the course, the learner will be able to:

CO1	Understand the fundamentals of embedded systems and microcontrollers.
CO 2	Analyze the architecture and components of embedded systems.
CO 3	Develop simple programs for embedded applications.
CO 4	Interface sensors and actuators with embedded hardware.
CO 5	Apply embedded system concepts in real-world applications like IoT.

Computer Oriented Statistical Techniques

After completing the course, the learner will be able to:

CO1	Understand basic statistical concepts and probability distributions.
CO 2	Apply statistical methods for data analysis and interpretation.
CO 3	Use regression and correlation techniques for prediction models.
CO 4	Implement statistical techniques using programming tools.
CO 5	Analyze datasets using hypothesis testing and inferential statistics.

Software Engineering

CO1	the course, the learner will be able to:
	Understand software development life cycle (SDLC) models.
CO 2	
	Apply software design principles and development methodologies.
CO 3	Perform requirement analysis, software testing, and quality
	assurance.
CO 4	Utilize project management techniques for software development.
	Wood was a confident of software development.

CO 5

RSET. Campus, S.V.Road, Malad (West), Mumbai – 400 064 Tel No. : 022 45207766

Web: www.sarafcollege.org

Develop software solutions following industry best practices.

Computer Graphics and Animation

CO1	ting the course, the learner will be able to:
	Gain a comprehensive understanding of computer graphics concepts, including display devices, I/O devices, and storage technologies like CRT, LCD, and video controllers.
CO 2	Implement key algorithms for scan conversion, line/polygon clipping, and curve drawing, such as DDA, Bresenham, Midpoint, and clipping algorithms.
CO 3	Apply 2D transformations like translation, rotation, scaling, and reflection using homogeneous coordinates and matrices.
CO 4	Represent and manipulate curves and surfaces, including Bezier, B-spline, and cubic splines for 3D modeling.
CO 5	Develop real-time graphics and interactive 2D/3D environments for games, simulations, and visual effects.

gsgc@rajasthani.org.in

TY BSCIT (SEM V)

Software Project Management

After completing the course, the learner wil

	Understand project management methodologies, planning, and risk assessment.
CO 2	Apply cost estimation, scheduling, and resource management techniques.
CO 3	Utilize project monitoring tools to track software development progress.
CO 4	Implement Agile, Scrum, and traditional project management approaches.
CO 5	Develop leadership and team management skills for software projects.

Internet of Things

CO1	Understand IoT architecture, protocols, and communication models.
CO 2	Interface sensors, actuators, and microcontrollers for IoT applications.
CO 3	Implement data collection, processing, and cloud integration in IoT systems.
CO 4	Develop secure and scalable IoT solutions for real-world applications.
CO 5	Explore IoT applications in healthcare, smart cities, and automation.

RSET. Campus, S.V.Road, Malad (West), Mumbai – 400 064 Tel No.: 022 45207766 Web: www.sarafcollege.org gsgc@rajasthani.org.in

Advanced Web Programming

After completing th	41.	1 11	L L l - 4
witer completing th	e course, the	iearner Will	de able to:

C01	Develop dynamic and responsive web applications using modern frameworks.
CO 2	Implement server-side and client-side scripting for enhanced functionality.
CO 3	Integrate databases, APIs, and security measures in web applications.
CO 4	Optimize web performance using caching, compression, and load balancing.
CO 5	Explore emerging trends in web technologies, including PWAs and WebSockets.

Artificial Intelligence

CO1	Understand fundamental AI concepts, search algorithms, and problem-solving techniques.
CO 2	Apply machine learning algorithms for classification, prediction, and clustering.
CO 3	Implement natural language processing (NLP) and neural networks.
CO 4	Develop AI-driven applications using Python, TensorFlow, and related frameworks.
CO 5	Analyze ethical considerations and societal impacts of AI technologies.

gsgc@rajasthani.org.in

Enterprise Java

After completing the course, the learner will be able to:

CO1	Develop scalable and secure enterprise applications using Java EE.
CO 2	Implement servlets, JSP, and JDBC for web-based applications.
CO 3	Utilize frameworks like Spring, Hibernate, and RESTful web services.
CO 4	Apply multithreading, security, and transaction management techniques.
CO 5	Design and deploy enterprise-level applications with cloud integration.

TY BSCIT (SEM VI)

Software Quality Assurance

CO1	Understand software testing principles, methodologies, and automation tools.
CO 2	Implement test cases, defect tracking, and debugging techniques.
CO 3	Apply quality standards like ISO, CMMI, and Six Sigma in software development.
CO 4	Analyze software reliability, performance, and usability metrics.
CO 5	Ensure software security, maintainability, and compliance with industry standards.

RSET. Campus, S.V.Road, Malad (West), Mumbai – 400 064

Tel No.: 022 45207766 Web: www.sarafcollege.org

gsgc@rajasthani.org.in

Security in Computing

After completing the course, the learner will be able to:

CO1	Understand cybersecurity principles, cryptography, and risk management.
CO 2	Implement authentication, access control, and network security measures.
CO 3	Detect and prevent security threats, vulnerabilities, and cyberattacks.
CO 4	Apply ethical hacking and penetration testing techniques.
CO 5	Ensure data protection and compliance with security regulations.

Business Intelligence

After completing the course, the learner will be able to:

C01	Understand BI concepts, data warehousing, and ETL processes.
CO 2	Use data visualization and analytics tools for decision-making.
CO 3	Apply predictive analytics and data mining techniques.
CO 4	Implement BI solutions for business process optimization.
CO 5	Explore the role of BI in digital transformation and strategic planning.

Principles of Geographic Information Systems

CO1	Understand GIS fundamentals, spatial data, and geospatial analysis techniques.
CO 2	Utilize GIS software for mapping, visualization, and decision support.
CO 3	Apply GIS in urban planning, environmental management, and

gsgc@rajasthani.org.in

	disaster response.
CO 4	Integrate GIS with database management and remote sensing technologies.
CO 5	Develop GIS-based applications for real-world problem-solving.

IT Service Management

After completing the course, the learner will be able to:

CO1	Understand ITSM frameworks like ITIL, COBIT, and ISO 20000.
CO 2	Apply incident, problem, and change management practices.
CO 3	Optimize IT services for efficiency, reliability, and customer satisfaction.
CO 4	Implement service lifecycle management and SLA-based support models.
CO 5	Align ITSM strategies with business objectives and digital transformation.

Programme coordinator

MALAD (WEST) MUMBAI-400054 Dr. Lipi Mukherjee

Vice Principal(SFD)

Principalina

Dr. Ashwat Desai

Rajasthani Sammelan Education Trust Ghanshyamdas Saraf College (Arts & Commerce) Malad West, Mumbai - 400 064